Black Friday Deal : Up to 40% OFF! + 2 free self-paced courses + Free Ebook  - SCHEDULE CALL

- Data Science Blogs -

Data Science and Software Engineering - What you should know?



Introduction

According to Google Economist, the sexiest job in 2019 will be Data Scientist and it is proven true so far because expert data scientists are high in demand everywhere today and taking up higher salary packages too. The job role of a Data scientist is highly similar to a Software Engineer with an average salary of $137k approximately.

With almost the same salaries, do they share the same roles or responsibilities? Well, it depends on the Company how they are  defining the roles. In most cases, both have a different set of responsibilities.

So in this blog we would discuss a few of the useful comparisons between.data science vs software engineering

What is Software Engineering?

Software Engineering is a structured approach to design, develop, and maintain the software program and avoid quality issues. It makes the requirements clear so that the development process can be easier to understand and implement.

A Software Engineer is a person who applies principles of Software Engineering to design, develop, maintain, and test the software program. The job role of a Software Engineer involves analyzing a problem, thinking, design and implement the best software solution and test it continuously. Software engineers majorly deal with complex business problems and try to find out the best solution too. The work of a Software engineer ends when he finishes implementation work for the problem.

Read: How To Write A Resume Of An Entry Level Data Scientist?

What is Data Science?

Data Science converts or extracts data in multiple formats to meaningful information. Businesses have the flexibility to use this knowledge to make decisions and improve overall business processes. With data science, businesses can become intelligent enough to sell or push products.

Read: Logistic Regression is Easy to Understand

Data scientists are data wranglers. The job role of a Data scientist involves making good data prediction on the basis of past behavior. A data scientist does not create solutions but he creates data models to generate such predictions or classifications. He tries to optimize data models so that new modes can be generated for better predictions or classifications. The work for a Data Scientist never ends because data behavior changes over time.

Data Science Training - Using R and Python

  • No cost for a Demo Class
  • Industry Expert as your Trainer
  • Available as per your schedule
  • Customer Support Available

It may take a lot of time when a data scientist creates its first data model. Data scientists must analyze the data, clean the data, generate new features, decide the best features, train models, try different AI or machine learning algorithms, and measure different online metrics. Each of these steps demands extra efforts and time like weeks or even months.

In this way, the work of Data Scientists does not have hard deadlines. It is tough for any data scientist to estimate when a data model can be deployed in production.

Data Science vs Software Engineering – Top Useful Technical Comparisons

Implementation vs. Experimentation

  • Software engineering teams are generally busy in implementation and the Data Science team is busy running experiments.
  • The goal of implementation is to add new functionalities to the system. At the same time, experiments are a way to check a hypothesis. Based on the result of the experiment, the hypothesis is proved either true or False.
  • If a hypothesis is proved false, it does not mean the experiment is failed. Based on your observations, you can start a new hypothesis and plan a new experiment.
  • It is sometimes possible that most of the hypotheses are proved to be false. But it does not mean you are wasting time. It is natural to try multiple approaches for complex problems until we find the right solution.

Read: Data Scientist Resumes That Will Get You An Interview Call

Data Science Vs. Software Engineering - Importance

The impact of IT is changing everything about science. Huge data is generated from everywhere and we need experiments for data management as it grows. Data science emerged as a solution here for data analysis, data management, etc.

Without following any discipline, designing a software solution is not possible. Software engineering defines a set of principles to create, maintain, and develop a software product without any vulnerabilities.

Read: What Exactly Does a Data Scientist Do?

Data Science Versus Software Engineering - Methodology

In Data Science, ETL is the process for data extraction, transforming it into a logical format that is easy to understand and loading it into a system for processing. At the same time, SDLC (Software Development Life Cycle) forms the basis of software engineering. So, you can choose data science or software engineering after analyzing the requirements of client or project.

Data Science Training - Using R and Python

  • Detailed Coverage
  • Best-in-class Content
  • Prepared by Industry leaders
  • Latest Technology Covered

Data Science Vs. Software Engineering - Approach

Data Science follows the process-oriented approach and allows pattern recognition, algorithms implementation etc. Software Engineering is framework-oriented that involves Waterfall, Spiral, agile frameworks and more.

Data Science Versus Software Engineering - Tools

There are various tools available on the market for data science vs software engineering. This makes it easier for all types of data science software engineers professionals who are whether technical or non-technical. Both data science software engineers are the technical workforce. 

Data science involves data visualization tools, data analytics tools, and database tools. Software engineering involves programming tools, database tools, design tools, CMS tools, testing tools, integration tools, etc.

Read: R Programming for Data Science: Tutorial Guide for beginners

Data Science Vs. Software Engineering - Platforms And Environments

The nature of frameworks or platforms depends upon the type of work  that we need to perform whether it is data science or software engineering.

Data science involves platforms like Hadoop, MapReduce, Spark, Data warehouse or Flink etc. Software Engineering involves platforms like data modeling, business planning, programming, maintenance, project management, reverse engineering, etc.

Data Science Vs. Software Engineering - Required Skills

To become a data science expert, the person should know how to build data products. He should have the basic knowledge of domains, algorithms, big data processing, data mining, structure or unstructured data, statistics, probability, AI, machine learning,etc.

Read: SQL- A Leading Language for Data Science Experts

To become a software engineer, the person should have the knowledge of core programming languages, testing or build tools, configuration tools, release management tools, etc.

Data Science Versus Software Engineering: General Key Differences

Now you know the basic concepts of Data Science and Software Engineering, let us look at the major comparisons between the two.

  • Data science comprises machine learning, data analytics, and data architecture whereas software engineering is more of a framework that helps to deliver a high-quality software product.
  • A data analyst analyzes data and converts it into meaningful information. A software engineer helps to build software with maximum accuracy.
  • Data science is all about big data whereas software engineering is the result of demand for new features and functionalities.
  • Data science helps in making good business decisions while software engineering makes the development of a software product more structured.
  • Data science is mostly driven by data and software engineering is driven by the needs and requirements of end-users.
  • Data science utilizes big data technologies to design data patterns. Software engineering is based on different programming languages and tools as per the Company requirements.
  • Data extraction is considered one of the most useful steps in data science and requirement gathering and management is taken as a vital step in software engineering.
  • Software engineering is all about building apps or systems. Data science is all about building a data model that helps to consolidate, retrieve, and store data from multiple sources or applications.
  • Software engineering uses SDLC models to develop a software product systematically. It helps in product development step by step without any vulnerabilities. Data science uses the ETL process for quick data management that involves data extraction, transforming it into useful information and loading the processed data into the system.

Data Science Training - Using R and Python

  • Personalized Free Consultation
  • Access to Our Learning Management System
  • Access to Our Course Curriculum
  • Be a Part of Our Free Demo Class

Wrapping up:

An important observation is that software design is made by the software developer based on the requirements as identified by the Data scientist or Data engineer. So, data science and software engineering usually go hand-in-hand. It is also useful to find information and patterns about specific functions  or products in data science.

Effective communication with clients or end-users helps to create more powerful business solutions because requirement gathering is the most important step in the SDLC. To know more about data science vs machine learning and its important tools and techniques, join data science certification program at JanBask Training and become a certified data scientist right away.

Read: Data Science vs Machine Learning- Career That is Right for You

fbicons FaceBook twitterTwitter lingedinLinkedIn pinterest Pinterest emailEmail

     Logo

    JanBask Training

    A dynamic, highly professional, and a global online training course provider committed to propelling the next generation of technology learners with a whole new way of training experience.


  • fb-15
  • twitter-15
  • linkedin-15

Comments

Trending Courses

Cyber Security Course

Cyber Security

  • Introduction to cybersecurity
  • Cryptography and Secure Communication 
  • Cloud Computing Architectural Framework
  • Security Architectures and Models
Cyber Security Course

Upcoming Class

1 day 22 Nov 2024

QA Course

QA

  • Introduction and Software Testing
  • Software Test Life Cycle
  • Automation Testing and API Testing
  • Selenium framework development using Testing
QA Course

Upcoming Class

2 days 23 Nov 2024

Salesforce Course

Salesforce

  • Salesforce Configuration Introduction
  • Security & Automation Process
  • Sales & Service Cloud
  • Apex Programming, SOQL & SOSL
Salesforce Course

Upcoming Class

1 day 22 Nov 2024

Business Analyst Course

Business Analyst

  • BA & Stakeholders Overview
  • BPMN, Requirement Elicitation
  • BA Tools & Design Documents
  • Enterprise Analysis, Agile & Scrum
Business Analyst Course

Upcoming Class

1 day 22 Nov 2024

MS SQL Server Course

MS SQL Server

  • Introduction & Database Query
  • Programming, Indexes & System Functions
  • SSIS Package Development Procedures
  • SSRS Report Design
MS SQL Server Course

Upcoming Class

2 days 23 Nov 2024

Data Science Course

Data Science

  • Data Science Introduction
  • Hadoop and Spark Overview
  • Python & Intro to R Programming
  • Machine Learning
Data Science Course

Upcoming Class

1 day 22 Nov 2024

DevOps Course

DevOps

  • Intro to DevOps
  • GIT and Maven
  • Jenkins & Ansible
  • Docker and Cloud Computing
DevOps Course

Upcoming Class

6 days 27 Nov 2024

Hadoop Course

Hadoop

  • Architecture, HDFS & MapReduce
  • Unix Shell & Apache Pig Installation
  • HIVE Installation & User-Defined Functions
  • SQOOP & Hbase Installation
Hadoop Course

Upcoming Class

1 day 22 Nov 2024

Python Course

Python

  • Features of Python
  • Python Editors and IDEs
  • Data types and Variables
  • Python File Operation
Python Course

Upcoming Class

9 days 30 Nov 2024

Artificial Intelligence Course

Artificial Intelligence

  • Components of AI
  • Categories of Machine Learning
  • Recurrent Neural Networks
  • Recurrent Neural Networks
Artificial Intelligence Course

Upcoming Class

2 days 23 Nov 2024

Machine Learning Course

Machine Learning

  • Introduction to Machine Learning & Python
  • Machine Learning: Supervised Learning
  • Machine Learning: Unsupervised Learning
Machine Learning Course

Upcoming Class

36 days 27 Dec 2024

 Tableau Course

Tableau

  • Introduction to Tableau Desktop
  • Data Transformation Methods
  • Configuring tableau server
  • Integration with R & Hadoop
 Tableau Course

Upcoming Class

1 day 22 Nov 2024

Search Posts

Reset

Receive Latest Materials and Offers on Data Science Course

Interviews