Christmas Special : Upto 40% OFF! + 2 free courses  - SCHEDULE CALL

- Data Science Blogs -

A Simple & Detailed Introduction of ANOVA

Introduction

The Analysis of Variance (ANOVA) can be considered as a powerful applied mathematical tool for testing the significance. The test of significance supported t-distribution is an adequate procedure just for testing the importance of the distinction between two sample means. In a situation, once we have three or more samples to think about at a time an alternative procedure is required for testing the hypothesis that each one of the inputs is taken from the same population, i.e. they have the same mean.

Suppose, 5 different fertilizers are used in 4 plots each of which contains wheat and yield of wheat on each of the plots is given.  We may be curious about checking whether the effect of those fertilizers on the yields is significantly different or in other words, whether the samples have come from the same normal population. The answer to the present problem is provided by the technique of analysis of variance. Thus, the basic purpose of the analysis of variance is to test the homogeneity of various means.  

By ANOVA, the overall variation within the sample data is denoted as the sum of its non-negative components where each of these components is a measure of the variation due to some specific independent factors(causes) separately and then comparing these estimates due to assignable factors(causes) with the estimate due to chance factor(cause), the latter being known as experimental error or simply error. 

Design of experiments

The steps to design an experiment are:

  • Planning of the experiment,
  • Getting significant information from it regarding the statistical hypothesis under study,
  • Performing statistical data analysis

Experiments have shown that proper consideration of the statistical analysis before the experiment is conducted, forces the experiments to plan more carefully the design of experiments. However, the certainty of the conclusion so drawn regarding the acceptance or rejection of the null hypothesis is given only in terms of probability. Accordingly, the design of the experiment may be defined as "the logical construction of the experiment in which the degree of uncertainty with which the inference is drawn may be well defined".

Some basic terminologies

  • Experiment: An experiment is a device or a means of getting an answer to the problem under construction. An experiment can be classified into two categories as follows:
    • Absolute, and
    • Comparative
  • Treatments: Different objects of comparison in a very comparative experiment are termed as treatments, e.g. in field experimentation, different fertilizers or different forms of crop or different way of cultivation are the treatments.
  • Experimental Unit: The smallest division of experimental material to which we apply the treatments and on which we make observations on the variable under study is termed as the experimental unit
  • Yield: The measurement of the variable under study on different experimental units (e.g. plots, in field experiments) are termed as yield.   

Principles of an Experiment Design

The basic principles of the design of an experiment are:

  • Replication,
  • Randomization, and
  • Local control

 

Replication can be explained as “the execution of an experiment more than once”. An experiment helps replication to average out the influence of the prospect factors on totally different experimental units. Thus, the repetition of treatment results in a more reliable estimate than is possible with a single observation. The following are the chief advantages of replication: 

At the first instance, replication serves to reduce experimental error and thus enables us to obtain a more precise estimate of the treatment effects. From statistical theory, we already know that standard error (S.E.) of the mean of the sample of size n is σ / √n where σ is the standard deviation (per unit) of the population. Thus, if any treatment is repeated r times, then the S.E. of its mean impact is σ / √r, where σ2 is the variance of the individual plot is calculated from the error variance. Consequently, replication has an important but limited role in increasing the efficiency of the design.

The most important purpose of replication is to provide an estimate of the experimental error without which we cannot 

  • test the significance of the difference between any two treatments, or
  • find the length of the CI.

Randomization

As we already discussed, by replication the experimenter tries to average out as far as possible the effects due to uncontrolled effects. This brings to him the question of allocation of treatments to its worth. In the absence of the prior knowledge of the variability of the experimental material, this objective is achieved through “randomization”, a process of assigning the treatments to various experimental units in a purely chance manner. Randomization mainly focuses on:

  1. The validity of the statistical tests of significance e.g. the t-test for testing the importance of the distinction between two means or the ‘Analysis of Variance’, F-test for testing the homogeneity of several means, based on the fact that the applied mathematics into consideration obeys some statistical distribution. Randomization provides a logical basis for that and makes it possible to draw rigorous inductive inferences by the use of statistical theories based on probability theory.  

  2. The purpose of randomness is to assure that the sources of variation, not controlled in the experiment, operate randomly so that the average effect on any group of units is zero. 

It should be kept in mind that performing randomization only without performing replication is not enough. It is only when randomization of treatments to various units is accompanied by a sufficient number of replications then we are in a position to apply the test of significance.

Local Control

If the experimental material, say field for agriculture experimentation, is heterogeneous and different treatments are allocated in various units(plots) at random over the entire field, the soil heterogeneity will also enter the uncontrolled factors and therefore increase the experimental error. It is mandatory to decrease the experimental error as much as possible without increasing the number of replications or without interfering with the statistical requirement of randomness so that the fewer differences between treatments can also be detected as important. The experimental error can be reduced by making use of the fact that neighbouring areas in a field are relatively more homogenous than those widely spread.  To separate the soil fertility effects from the experimental error, the whole experimental area is divided into homogenous groups(blocks) row-wise or column-wise (one-way elimination of fertility gradient, c.f. Randomized Block design) or both (elimination of fertility gradient into two perpendicular directions c.f. Latin square design, according to the fertility gradient of the soil such that the variation within each block is minimum and between the blocks is maximum. The treatments are then assigned at random inside every block. 

Read: How Comparison of Two Populations Data look like?

The method of reducing the experimental error by dividing the comparatively heterogeneous experimental area(field) into homogenous blocks (due to physical closeness as for as field experiments are concerned) is known as Local control.

The Analysis of Variance (ANOVA) is mainly classified into two categories: 

  1. One-way classification,
  2. Two-way classification.

But here we are only discussing one-way classification. 

One-Way Classification

Let us suppose that N observations xij (i=1,2,…..,k; j=1,2,…., ni ) of a random variable X are classified on some basis into k categories of sizes n1, n2,……., nk, (N=i=1kni ) as exhibited below:  

  Means Total
X11 X12 …….x1n1 1 T1
X21 . . . . X22 …….x2n2 .               . .                . .                . .               . 2 . . . . T2 . . . .
Xi1 Xi2 …….xini i T3
Xk1 Xk2 …….xknk k T4

The total variation within the observation xij can be categorized into the following categories:

  1. The variation between the categories or the variation due to different bases of classification referred to as treatments.
  2. The variation inside the categories i.e. the inherent variation of the random variable inside the observation of a category.

The first variety of a variable is because of negotiable causes which can be detected and managed by human endeavour and the second variety of variation is because of likelihood causes that are on the far side of the control of the human hand.

The main target of the ANOVA technique is to check whether there is enough difference between the class means because of the inherent variability inside the separate categories.

The linear mathematical model used in one-way classification is:

             xij = µi + ij 

               = µ + (µi -  µ) + £ij   

                       = µ + i + £ij 

where, (i=1,2,…..,k ; j=1,2,….,ni ), 

             xij is the yield from the jth  cow, (j=1,2,…,ni) fed on the ith ration (i=1,2,…,k),

            µ is general mean effect given by 

                                                          µ=i=1kni µi / N,

Read: How to work with Deep Learning on TensorFlow?

           ai is the effect of the ith ration given by ai = µi -  µ, (i=1,2,..k),

             £ij is the error because of chance

Assumptions in the Model:

  1. All the observation xii are independent,
  2. Different effects are additive in nature

Statistical analysis of the Model

Hence,

                 Total S.S. = S.S.E + S.S.T

Degree of freedom for various S.S. 

ST2, the total S.S. which is computed from N quantities of the form (xij - x̄..)2 will carry (N-1) degrees of freedom(d.f.).

Mean Sum of Squares (M.S.S.) 

When we divide S.S by d.f then it gives M.S.S.

ANOVA Table for One-way Classification

Sources of Variation

Sum of Squares

d.f

Mean Sum of Squares

Read: How to import Data into R using Excel, CSV, Text and XML

Treatment (Ration)

St2

k-1

st2= St2/(k-1)

Error

SE2

N-k

SE2= SE2/(N-K)

Total

ST2

N-1

 

Conclusion

In this blog, we have discussed the Analysis of Variance (ANOVA). It is a statistical tool for the testing of significance. We have discussed the method for designing an experiment and also the classification of ANOVA. Further, One-way ANOVA is explained in detail, its approach, mathematical model, different sum of squares, degree of freedom and mean sum of squares. 

Please leave the query and comments in the comment section.

Read: Learn Data Science Seamlessly: Tips to Elevate Your Learning Curve


fbicons FaceBook twitterTwitter lingedinLinkedIn pinterest Pinterest emailEmail

     Logo

    JanBask Training

    A dynamic, highly professional, and a global online training course provider committed to propelling the next generation of technology learners with a whole new way of training experience.


  • fb-15
  • twitter-15
  • linkedin-15

Comments

Trending Courses

Cyber Security Course

Cyber Security

  • Introduction to cybersecurity
  • Cryptography and Secure Communication 
  • Cloud Computing Architectural Framework
  • Security Architectures and Models
Cyber Security Course

Upcoming Class

1 day 27 Dec 2024

QA Course

QA

  • Introduction and Software Testing
  • Software Test Life Cycle
  • Automation Testing and API Testing
  • Selenium framework development using Testing
QA Course

Upcoming Class

2 days 28 Dec 2024

Salesforce Course

Salesforce

  • Salesforce Configuration Introduction
  • Security & Automation Process
  • Sales & Service Cloud
  • Apex Programming, SOQL & SOSL
Salesforce Course

Upcoming Class

4 days 30 Dec 2024

Business Analyst Course

Business Analyst

  • BA & Stakeholders Overview
  • BPMN, Requirement Elicitation
  • BA Tools & Design Documents
  • Enterprise Analysis, Agile & Scrum
Business Analyst Course

Upcoming Class

1 day 27 Dec 2024

MS SQL Server Course

MS SQL Server

  • Introduction & Database Query
  • Programming, Indexes & System Functions
  • SSIS Package Development Procedures
  • SSRS Report Design
MS SQL Server Course

Upcoming Class

1 day 27 Dec 2024

Data Science Course

Data Science

  • Data Science Introduction
  • Hadoop and Spark Overview
  • Python & Intro to R Programming
  • Machine Learning
Data Science Course

Upcoming Class

8 days 03 Jan 2025

DevOps Course

DevOps

  • Intro to DevOps
  • GIT and Maven
  • Jenkins & Ansible
  • Docker and Cloud Computing
DevOps Course

Upcoming Class

-0 day 26 Dec 2024

Hadoop Course

Hadoop

  • Architecture, HDFS & MapReduce
  • Unix Shell & Apache Pig Installation
  • HIVE Installation & User-Defined Functions
  • SQOOP & Hbase Installation
Hadoop Course

Upcoming Class

2 days 28 Dec 2024

Python Course

Python

  • Features of Python
  • Python Editors and IDEs
  • Data types and Variables
  • Python File Operation
Python Course

Upcoming Class

1 day 27 Dec 2024

Artificial Intelligence Course

Artificial Intelligence

  • Components of AI
  • Categories of Machine Learning
  • Recurrent Neural Networks
  • Recurrent Neural Networks
Artificial Intelligence Course

Upcoming Class

9 days 04 Jan 2025

Machine Learning Course

Machine Learning

  • Introduction to Machine Learning & Python
  • Machine Learning: Supervised Learning
  • Machine Learning: Unsupervised Learning
Machine Learning Course

Upcoming Class

1 day 27 Dec 2024

 Tableau Course

Tableau

  • Introduction to Tableau Desktop
  • Data Transformation Methods
  • Configuring tableau server
  • Integration with R & Hadoop
 Tableau Course

Upcoming Class

2 days 28 Dec 2024

Search Posts

Reset

Receive Latest Materials and Offers on Data Science Course

Interviews