Converting Pandas dataframe into Spark dataframe error
I'm trying to convert Pandas DF into Spark one. DF head:
10000001,1,0,1,12:35,OK,10002,1,0,9,f,NA,24,24,0,3,9,0,0,1,1,0,0,4,54310000001,2,0,1,12:36,OK,10002,1,0,9,f,NA,24,24,0,3,9,2,1,1,3,1,3,2,611
10000002,1,0,4,12:19,PA,10003,1,1,7,f,NA,74,74,0,2,15,2,0,2,3,1,2,2,691
Code:
dataset = pd.read_csv("data/AS/test_v2.csv")
sc = SparkContext(conf=conf)
sqlCtx = SQLContext(sc)
sdf = sqlCtx.createDataFrame(dataset)
And I got an error, convert pandas dataframe to spark dataframe:
TypeError: Can not merge type and
You can avoid type related errors by imposing a schema as follows:
Suppose a text file was created (samp.csv) with the original data (as above) and hypothetical column names were inserted ("col1","col2",...,"col25").
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
spark = SparkSession.builder.appName('pandasToSparkDF').getOrCreate()
pdDF = pd.read_csv("samp.csv")
contents of the pandas data frame:
pdDF
col1 col2 col3 col4 col5 col6 col7 col8 col9 col10 ... col16 col17 col18 col19 col20 col21 col22 col23 col24 col25
0 10000001 1 0 1 12:35 OK 10002 1 0 9 ... 3 9 0 0 1 1 0 0 4 543
1 10000001 2 0 1 12:36 OK 10002 1 0 9 ... 3 9 2 1 1 3 1 3 2 611
2 10000002 1 0 4 12:19 PA 10003 1 1 7 ... 2 15 2 0 2 3 1 2 2 691
Next, create the schema:
from pyspark.sql.types import *
mySchema = StructType([ StructField("Col1", LongType(), True)
,StructField("Col2", IntegerType(), True)
,StructField("Col3", IntegerType(), True)
,StructField("Col4", IntegerType(), True)
,StructField("Col5", StringType(), True)
,StructField("Col6", StringType(), True)
,StructField("Col7", IntegerType(), True)
,StructField("Col8", IntegerType(), True)
,StructField("Col9", IntegerType(), True)
,StructField("Col10", IntegerType(), True)
,StructField("Col11", StringType(), True)
,StructField("Col12", StringType(), True)
,StructField("Col13", IntegerType(), True)
,StructField("Col14", IntegerType(), True)
,StructField("Col15", IntegerType(), True)
,StructField("Col16", IntegerType(), True)
,StructField("Col17", IntegerType(), True)
,StructField("Col18", IntegerType(), True)
,StructField("Col19", IntegerType(), True)
,StructField("Col20", IntegerType(), True)
,StructField("Col21", IntegerType(), True)
,StructField("Col22", IntegerType(), True)
,StructField("Col23", IntegerType(), True)
,StructField("Col24", IntegerType(), True)
,StructField("Col25", IntegerType(), True)])
Note: True (implies nullable allowed)
Create the pyspark dataframe to avoid convert pandas dataframe to spark dataframe:
df = spark.createDataFrame(pdDF,schema=mySchema)
Confirm the pandas data frame is now a pyspark data frame:
type(df)
Now you have :
pyspark.sql.dataframe.DataFrame