A user is trying to implement the decision tree regressor algorithm on some training data but when he calls fit() he gets an error.

906    Asked by SanjanaShah in Data Science , Asked on Nov 5, 2019
Answered by Sanjana Shah

(trainingData, testData) = data.randomSplit([0.7, 0.3])

    vecAssembler = VectorAssembler(inputCols=["_1", "_2", "_3", "_4", "_5", "_6", "_7", "_8", "_9", "_10"], outputCol="features")

    dt = DecisionTreeRegressor(featuresCol="features", labelCol="_11")

    dt_model = dt.fit(trainingData)

He receives the following error

File "spark.py", line 100, in

    main()

  File "spark.py", line 87, in main

    dt_model = dt.fit(trainingData)

  File "/opt/spark/python/pyspark/ml/base.py", line 132, in fit

    return self._fit(dataset)

  File "/opt/spark/python/pyspark/ml/wrapper.py", line 295, in _fit

    java_model = self._fit_java(dataset)

  File "/opt/spark/python/pyspark/ml/wrapper.py", line 292, in _fit_java

    return self._java_obj.fit(dataset._jdf)

  File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__

  File "/opt/spark/python/pyspark/sql/utils.py", line 79, in deco

    raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)

pyspark.sql.utils.IllegalArgumentException: u'requirement failed: Column features must be of type struct,values:array> but was actually struct,values:array>.'

The above error is because of missing transformation part and selecting features and labels from the transformed data. The below code can help to fix the issue

from pyspark.ml.feature

from pyspark.ml.classification import DecisionTreeClassifier

#date processing part

vecAssembler = VectorAssembler(input_cols=['col_1','col_2',...,'col_10'],outputCol='features')

#you missed these two steps

trans_data = vecAssembler.transform(data)

final_data = trans_data.select('features','col_11') #your label column name is col_11

train_data, test_data = final_data.randomSplit([0.7,0.3])

#ml part

dt = DecisionTreeClassifier(featuresCol='features',labelCol='col_11')

dt_model = dt.fit(train_data)

dt_predictions = dt_model.transform(test_data)

#proceed with the model evaluation part after this



Your Answer

Interviews

Parent Categories