A user wants to know in the doc2vec model, can we cluster on the vectors themselves? Should we cluster each resulting model.docvecs[1]vector? How to implement the clustering model? Below is the code implementation.
model = gensim.models.doc2vec.Doc2Vec(size= 100, min_count = 5,window=4, iter = 50, workers=cores)
model.build_vocab(res)
model.train(res, total_examples=model.corpus_count, epochs=model.iter)
# each of length 100
len(model.docvecs[1])
We can use the document vectors directly from the model to fit an unsupervised algorithm like k-means clustering algorithm. Then we can use the centroids to label the documents.
from scipy.cluster.vq import kmeans,vq
NUMBER_OF_CLUSTERS = 15
centroids, _ = kmeans(model.docvecs, NUMBER_OF_CLUSTERS)
# computes cluster Id for document vectors
doc_ids,_ = vq(model.docvecs,centroids)
# zips cluster Ids back to document labels
doc_labels = zip(model.docvecs.doctags.keys(), doc_ids)
# outputs document label and the corresponding cluster label
[('doc_216', 0),
('doc_217', 12),
('doc_214', 13),
('doc_215', 11),
('doc_212', 13),
('doc_213', 11),
('doc_210', 5),
('doc_211', 13),
('doc_165', 0),
... ]
Using gensim, centroids can be used for retrieval. If matching every document with a cluster is not needed, for example, if we need to get the nearest 10 documents to centroid(cluster) 1 we can implement the following code.
model.docvecs.most_similar(positive = [centroids[1]], topn = 10)
# outputs document label and a similarity score
[('doc_243', 0.9186744689941406),
('doc_74', 0.9134798049926758),
('doc_261', 0.8858329057693481),
('doc_88', 0.8851054906845093),
('doc_276', 0.8691701292991638),
('doc_249', 0.8666893243789673),
('doc_233', 0.8334537148475647),
('doc_292', 0.8269758224487305),
('doc_98', 0.8193566799163818),
('doc_82', 0.808419942855835)]