Explain how to implement Multiple Linear regression in python
First we import all the libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
USAhousing = pd.read_csv('USA_Housing.csv')
X = USAhousing[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
'Avg. Area Number of Bedrooms', 'Area Population']]
y = USAhousing['Price']
Now we split the model
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101)
Now we fit and predict the model
from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X_train,y_train)
predictions = lm.predict(X_test)