How can I implement anomaly detection for the sales data?

267    Asked by CarolynBuckland in Data Science , Asked on Mar 14, 2024

There is a scenario where I am working as a data scientist for a particular e-commerce platform. My task is to implement anomaly detection for the sales data so that I can identify unusual patterns or outliers that may indicate fraudulent activity or technical issues. How can I execute anomaly detection for the sales data time series? 

Answered by Celina Lagunas

 In the context of data science, you can implement anomaly detection for the sales data by using the steps which are given below:-

Data processing

You can clean the sales data, handle missing values and you also can ensure a consistent time interval.

Feature engineering

You can try to extract relevant features from the sales data, such as total sales, and average sales per day.

Choose an anomaly detection method

You should select an appropriate anomaly detection method for the time series data. You can choose among machine learning models, statistical methods, time series models, and hybrid approaches.

Threshold selection

You can try to determine an appropriate threshold to define anomalies based on the chosen method and the characteristics of the sales data.

Detect anomalies

You can apply the trained model for the entire sales date time series to detect anomalies.

From sklearn.ensemble import IsolationForest
# Load and preprocess sales data
# Assuming sales_data is a panda DataFrame with columns: ‘timestamp’ and ‘sales_amount’
# Extract features
X = sales_data[[‘sales_amount’]]
# Train Isolation Forest model
Model = IsolationForest(contamination=0.05) # Adjust contamination parameter as needed
Model.fit(X)

Your Answer

Interviews

Parent Categories