How can I use an autoencoder in deep learning to detect unusual patterns in network traffic?

281    Asked by DeirdreCameron in Data Science , Asked on Mar 4, 2024

I am currently engaged as a machine learning engineer and I am currently working for a cybersecurity company. The company where I am working is very much interested in developing an anomaly detection system for network traffic data. How can I use an autoencoder in deep learning to detect unusual patterns in network traffic? 

Answered by Damini das

 In the context of data science, you can use autoencoder deep learning for anomaly detection in the context of network traffic by using the simple steps which are given below:-


Import tensorflow as tf
From tensorflow.keras import layers, models
# Define the autoencoder architecture
Input_dim = 128 # Dimensionality of input data (e.g., network traffic features)
Latent_dim = 32 # Dimensionality of latent space
# Encoder
Encoder_input = tf.keras.Input(shape=(input_dim,))
Encoder_output = layers.Dense(latent_dim, activation=’relu’)(encoder_input)
Encoder = tf.keras.Model(encoder_input, encoder_output)
# Decoder
Decoder_input = tf.keras.Input(shape=(latent_dim,))
Decoder_output = layers.Dense(input_dim, activation=’sigmoid’)(decoder_input)
Decoder = tf.keras.Model(decoder_input, decoder_output)
# Autoencoder (combining encoder and decoder)
Autoencoder_input = tf.keras.Input(shape=(input_dim,))
Encoded = encoder(autoencoder_input)
Decoded = decoder(encoded)
Autoencoder = tf.keras.Model(autoencoder_input, decoded)
# Compile the autoencoder
Autoencoder.compile(optimizer=’adam’, loss=’mse’)
# Train the autoencoder on normal network traffic data
Autoencoder.fit(train_data, train_data, epochs=10, batch_size=64, validation_data=(val_data, val_data))
# Evaluate the autoencoder and identify anomalies based on reconstruction errors
Reconstruction_errors = autoencoder.evaluate(test_data, test_data)
Anomalies_indices = [I for I, error in enumerate(reconstruction_errors) if error > threshold]


Your Answer

Interviews

Parent Categories