What all are different documents that a tester should have for entire SDL Cphase?

804    Asked by KirstyDeller in QA Testing , Asked on Jan 29, 2020

 I am currently engaged in a particular task in which I am managing a data visualization project where I have a large number if categories and the stakeholders are finding it challenging to interpret a pie chart due to the complexity. What are the other alternative data visualization options should I propose them to improve the clarity and understanding for the stakeholders?  

Answered by Kirsty Deller

Here are the other some alternative data visualization options or techniques you can propose to them:-

Horizontal bar chart

You can suggest them to use horizontal bar chart instead of using a pie chart. Thus format can offer easier comparison between categories and it is particularly effective when you are dealing with a large number of categories.

Import matplotlib.pyplot as plt
Categories = [‘Category 1’, ‘Category 2’, ‘Category 3’, ‘Category 4’, ‘Category 5’]
Values = [20, 35, 15, 25, 30]
Plt.barh(categories, values)
Plt.xlabel(‘Values’)
Plt.ylabel(‘Categories’)
Plt.title(‘Horizontal Bar Chart’)
Plt.show()

Stacked bar chart

If the categories possibly van be grouped in sub categories then you can use a stacked bar chart for showing the total value. You can also highlight the contribution of each subcategories in it.

Import matplotlib.pyplot as plt

Categories = [‘Category 1’, ‘Category 2’, ‘Category 3’, ‘Category 4’, ‘Category 5’]
Subcategories = [‘Subcategory A’, ‘Subcategory B’, ‘Subcategory C’, ‘Subcategory D’, ‘Subcategory E’]
Values = [[10, 5, 5, 0, 10], [15, 10, 5, 5, 0], [5, 10, 0, 5, 10], [10, 5, 5, 5, 0], [15, 5, 10, 0, 10]]
Plt.bar(categories, values[0], label=subcategories[0])
Plt.bar(categories, values[1], bottom=values[0], label=subcategories[1])
Plt.bar(categories, values[2], bottom=[sum(x) for x in zip(values[0], values[1])], label=subcategories[2])
Plt.bar(categories, values[3], bottom=[sum(x) for x in zip(values[0], values[1], values[2])], label=subcategories[3])
Plt.bar(categories, values[4], bottom=[sum(x) for x in zip(values[0], values[1], values[2], values[3])], label=subcategories[4])
Plt.xlabel(‘Categories’)
Plt.ylabel(‘Values’)
Plt.title(‘Stacked Bar Chart’)
Plt.legend()
Plt.show()

Treemap

A treemap is another important and useful chart when you are trying to visualise hierarchical data with a focus on proportionality. It would represent categories as rectangle with size proportional to their values.

Import matplotlib.pyplot as plt
Import squarify
Categories = [‘Category 1’, ‘Category 2’, ‘Category 3’, ‘Category 4’, ‘Category 5’]
Values = [20, 35, 15, 25, 30]
Squarify.plot(sizes=values, label=categories, alpha=0.7)
Plt.axis(‘off’)
Plt.title(‘Treemap’)
Plt.show()


Your Answer

Interviews

Parent Categories