How can I troubleshoot and resolve the issue of keyword padding within the IWMS?
I am currently assigned as a facility manager at a large corporate office using an integrated workspace system (IWMS) to manage the real estate company. I have been tasked with improving the search functionality within the system to ensure that employees can quickly find information about workspace availability, maintenance, and allocation of resources. However, some are facing difficulties in this process due to the unrelated keyword to the workspace description. How can I troubleshoot and resolve this particular issue?
In the context of Salesforce, here are the steps given:-
1. Analysis of search logs
Firstly, you should try to use SQL queries to analyze search logs and identify frequently searched items with low relevance scores.
2. Detecting high keyword density
You can create a script that can calculate keyword density in descriptions and logs.
3. Conduct random audit
You can also try Random audits for Manual review. For this, you just try to choose random entries for review.
4. Develop guidelines
You can create a document that outlines the acceptable keyword practices and distribute it to all the users.
5. Keyword moderation system
You can implement a review system where the new entries are checked for the keyword padding before being published.
6. Adjust search algorithm
You can easily modify the search algorithm to reduce the weight of excessively dense keywords.
7. Educate employees
You can also conduct training sessions and then create informational materials which can explain the impact of the keyword padding.
8. Keyword moderation system
You can implement a review system where the new entries should be checked for keyword padding before being published.
Import java.util.HashMap;
Import java.util.Map;
Public class IWMSImprovement {
Public static void main(String[] args) {
// Sample data
Map documents = new HashMap<>();
Documents.put(“doc1”, “This is a workspace with ample padding padding padding.”);
Documents.put(“doc2”, “Workspace with modern amenities and open seating.”);
String[] keywords = {“workspace”, “padding”};
// Create instances
SearchAlgorithm searchAlgorithm = new SearchAlgorithm();
// Rank documents
Map rankedDocuments = searchAlgorithm.rankDocuments(documents, keywords);
// Display results
For (Map.Entry entry : rankedDocuments.entrySet()) {
System.out.println(“Document: “ + entry.getKey() + “, Relevance: “ + entry.getValue());
}
// Example keyword density check
KeywordDensityChecker keywordDensityChecker = new KeywordDensityChecker();
For (String keyword : keywords) {
For (Map.Entry entry : documents.entrySet()) {
Double density = keywordDensityChecker.calculateKeywordDensity(entry.getValue(), keyword);
System.out.println(“Document: “ + entry.getKey() + “, Keyword: “ + keyword + “, Density: “ + density);
}
}
}
}
Class KeywordDensityChecker {
Public double calculateKeywordDensity(String text, String keyword) {
String[] words = text.split(\s+);
Int keywordCount = 0;
For (String word : words) {
If (word.equalsIgnoreCase(keyword)) {
keywordCount++;
}
}
Return (double) keywordCount / words.length;
}
}
Class SearchAlgorithm {
Private KeywordDensityChecker keywordDensityChecker = new KeywordDensityChecker();
Public double calculateRelevance(String description, String[] keywords) {
Double relevance = 0.0;
For (String keyword : keywords) {
Double density = keywordDensityChecker.calculateKeywordDensity(description, keyword);
If (density > 0.05) { // Adjust the threshold as needed
Density = 0.05; // Cap the density to reduce keyword padding impact
}
Relevance += density;
}
Return relevance / keywords.length;
}
Public Map rankDocuments(Map documents, String[] keywords) {
Map rankedDocuments = new HashMap<>();
For (Map.Entry entry : documents.entrySet()) {
Double relevance = calculateRelevance(entry.getValue(), keywords);
rankedDocuments.put(entry.getKey(), relevance);
}
Return rankedDocuments;
}
}